Winter Semester 2010/11
Winter Semester 2011/12
Winter Semester 2012/13
Winter Semester 2013/14
Winter Semester 2014/15
Geometry and Topology MAT2304
Course content:
Matric spaces. Topology of metric spaces. Topological spaces. Basis of a topology. Continuous functions, homeomorphisms, Tietze's theorem. Connected spaces.
Compact spaces. Contiuous functions of compact spaces, Cantor's set, Cartesian products of compact spaces. Compacts subsets of n-dimensional Euclidean space.
Completeness. Baire category theorem.Banach fixed point theorem.
Homotopy theory. The fundamental group. Brouwer theorem in dimension two. Proof of the Fundamental Fundamental Theorem of Algebra
Learning outcomes: Familiarity with fundamental topological notions. Understanding of a metric and topological classification. Recognition of topological properties of subsets of an Euclidean space.
(in Polish) Rodzaj przedmiotu
Course coordinators
Bibliography
a) basic references:
1. R. Engelking, K. Sieklucki, Wstęp do topologii. PWN, Warszawa 1986
2. K. Janich, Topologia. PWN, Warszawa 1991.
3. K. Kuratowski, Wstęp do teorii mnogości i topologii. PWN, Warszawa 2004.
b) supplementary references:
1. J. Mioduszewski, Wykłady z topologii. Topologia przestrzeni euklidesowych, Katowice 1994
Notes
Term 2013Z:
None |