Winter Semester 2007/08
Winter Semester 2008/09
Winter Semester 2009/10
Winter Semester 2010/11
Winter Semester 2011/12
Mathematics 1 EZ1A100003
Course content:
Complex numbers.
Matrices (matrix operations, determinants and their properties, inverse matrix).
Systems of linear equations (Cramer's systems, Gauss elimination method).
Vectors (scalar, vector and mixed products).
Planes and lines in R^3 space (plane and line equations, plane and line intersections).
Elementary functions review.
Number sequences.
Function limit, continuity.
Function derivative.
Function examination.
Indefinite integral, integration by parts and by substitution.
Definite integral, applications.
Learning outcomes:
Ability to problem solving formulated in algebraic description form. Understanding and the ability to apply basic ideas of one variable differential and integral calculus.
(in Polish) Rodzaj przedmiotu
Course coordinators
Term 2009Z: | Term 2010Z: |
Bibliography
a) basic references:
1. Jurlewicz T., Skoczylas Z.: Algebra liniowa 1, Oficyna Wydawnicza "GiS", Wrocław, 2007.
2. Kajetanowicz P., Wierzejewski J.: Algebra z geometrią analityczną, PWN, Warszawa, 2008.
3. Gewert M., Skoczylas Z.: Analiza matematyczna 1, Oficyna Wydawnicza "GiS", Wrocław, 2009.
b) supplementary references:
1. Blyth T.S., Robertson E.F.: Basic linear algebra, Springer, London - New York, 2002.
2. Marsden J., Weinstein A.: Calculus I, Springer-Verlag, New York, 1985.
3. Marsden J., Weinstein A.: Calculus II, Springer-Verlag, New York, 1985.