Winter Semester 2006/07
Winter Semester 2008/09
Winter Semester 2009/10
Winter Semester 2010/11
Winter Semester 2011/12
Mathematics 1 AU1051
Course content:
1.FUNCTIONS.Algebraic and transcendental functions.Simple curve sketching.Limits.
2.DIFFERENTIATION.Functions and their derivatives.Curve plotting.
3.INTEGRATION.Applications of the definite integral.
4.MATRICES. Simultaneous linear equations.Planar transformations. Tilings. Ornaments.
5.VECTORS. Vectors in space. Scalar product. Vector product.Triple scalar product.Equations of lines and planes.
6.CURVES.Ellipse.Hyperbola.Parabola.Cycloid.Spirals. Other curves.Fractals.
7.SURFACES.Platonic solids.Archimedean solids. Cylinders.Quadric surfaces.Helical surfaces.Minimal surfaces. Curvature of surfaces.
Learning outcomes:To learn students to use basic notions of calculus and analytic geometry in architectural problems.
(in Polish) Rodzaj przedmiotu
Course coordinators
Term 2010Z: | Term 2011Z: |
Bibliography
a) basic references:
1.T.Czyżykowski,Matematyka dla architektów.
2.W.Korczak,M.Trajdos.Wektory,pochodne,całki.
3.E.H.Gombrich,Zmysł porzadku.O psychologii sztuki dekoracyjnej.
4.H.M.Cundy,A.P.Rollett,Modele matematyczne.
b) supplementary references:
1.W.J.Mitchell,The logic of architecture.
2.H.Pottman,A.Asperl,M.Hofer,A.Kilian,Architectural Geometry.
3.R.Janiszewski,Inspiracje matematyczne w architektu rze,Zeszyty"Mat.-Społ.-Nauczanie".
4.C.Bovill,Fractal Geometry in Architecture and Desing.
5.S.Jaśkowski,Matematyka ornamentu.